On the non-homogeneous cubic diophantine equation with four unknowns

$$
x^{2}+y^{2}+4\left(\left(2 k^{2}-2 k\right)^{2} z^{2}-4-w^{2}\right)=\left(2 k^{2}-2 k+1\right) x y z
$$

J.Shanthi' ${ }^{1}$,M.A.Gopalan ${ }^{2}$
${ }^{1}$ Assistant Professor, Department of Mathematics, Shrimati Indira Gandhi College, Affiliated to Bharathidasan University, Trichy-620 002, Tamil Nadu, India. email: shanthivishvaa@gmail.com
${ }^{2}$ Professor, Department of Mathematics, Shrimati Indira Gandhi College, Affiliated to Bharathidasan University, Trichy-620 002, Tamil Nadu, India. email: mayilgopalan@gmail.com

Abstract

The non-homogeneous cubic diophantine equation with four unknowns given by $x^{2}+y^{2}+4\left(\left(2 k^{2}-2 k\right)^{2} z^{2}-4-w^{2}\right)=\left(2 k^{2}-2 k+1\right) x y z$ is analyzed for its non-zero distinct integer solutions through applying the linear transformtions and reducing it to pythagorean equation.

Keywords: Cubic equation with four unknowns,Non-homogeneous cubic, Integral solutions, Pythagorean equation.

Introduction:

The cubic diophantine equations are rich in variety and offer an unlimited field for research [1,2]. In particular refer [3-24] for a few problems on cubic equation with 3 and 4 unknowns. This paper concerns with an interesting non-homogeneous cubic diophantine equation with four unknowns given by $x^{2}+y^{2}+4\left(\left(2 k^{2}-2 k\right)^{2} z^{2}-4-w^{2}\right)=\left(2 k^{2}-2 k+1\right) x y z$ for determining its infinitely many non-zero distinct integral solutions by reducing it to pythagorean equation.

Method of Analysis:

The non-homogeneous cubic equation with four unknowns under consideration is

$$
\begin{equation*}
x^{2}+y^{2}+4\left(\left(2 k^{2}-2 k\right)^{2} z^{2}-4-w^{2}\right)=\left(2 k^{2}-2 k+1\right) x y z \tag{1}
\end{equation*}
$$

Employing the linear transformations

$$
\begin{equation*}
x=2 X+2\left(2 k^{2}-2 k+1\right) z \quad, \quad y=4 \tag{2}
\end{equation*}
$$

in (1),it reduces to the equation

$$
\begin{equation*}
X^{2}=(2 k-1)^{2} z^{2}+w^{2} \tag{3}
\end{equation*}
$$

which is solved through different ways and thus,inview of (2),one obtains different sets of solutions to (1).

Way: 1

To start with,observe that (3) is in the form of the well-known pythagorean equation.Employing the most cited solutions of the pythagorean equation and performing a few calculations, the following two sets of solutions to (1) are obtained:

Set:1

$$
\begin{aligned}
& x=2\left((2 k-1)^{2} p^{2}+q^{2}+2 p q\left(2 k^{2}-2 k+1\right)\right), y=4 \\
& z=2 p q, w=(2 k-1)^{2} p^{2}-q^{2}
\end{aligned}
$$

Set:2

$$
\begin{aligned}
& x=2(2 k-1)\left(2 k^{2} p^{2}-\left(2 k^{2}-4 k+2\right) q^{2}\right), y=4 \\
& z=(2 k-1)\left(p^{2}-q^{2}\right), w=2(2 k-1)^{2} p q
\end{aligned}
$$

Way: 2

(3) can be written as the system of double equations as below:

$$
\begin{aligned}
& X+(2 k-1) z=w^{2}, \\
& X-(2 k-1) z=1
\end{aligned}
$$

Solving the above system of equations and using (2),the corresponding solutions to (1) are given by

$$
\begin{aligned}
& x=8 k^{2} \alpha((2 k-1) \alpha+1)+2, y=4 \\
& z=2(2 k-1) \alpha^{2}+2 \alpha, w=2(2 k-1) \alpha+1
\end{aligned}
$$

Way: 3

(3) can be written in the form of ratio as

$$
\frac{X+w}{z}=\frac{(2 k-1)^{2} z}{X-w}=\frac{\alpha}{\beta}, \beta \neq 0
$$

which is equivalent to the system of equations

$$
\begin{aligned}
& \beta X+\beta w-\alpha z=0 \\
& -\alpha X+\alpha w+(2 k-1)^{2} \beta z=0
\end{aligned}
$$

Applying the method of cross-multiplication,one has

$$
\begin{align*}
& X=\alpha^{2}+(2 k-1)^{2} \beta^{2}, \\
& w=\alpha^{2}-(2 k-1)^{2} \beta^{2}, z=2 \alpha \beta \tag{4}
\end{align*}
$$

In view of (2), one has

$$
\begin{equation*}
x=2 \alpha^{2}+2(2 k-1)^{2} \beta^{2}+4\left(2 k^{2}-2 k+1\right) \alpha \beta, y=4 \tag{5}
\end{equation*}
$$

Thus,(4) and (5) represent the integer solutions to (1).
Note:
(3) may also be written in the form of ratio as

$$
\frac{X+w}{(2 k-1) z}=\frac{(2 k-1) z}{X-w}=\frac{\alpha}{\beta}, \beta \neq 0
$$

For this choice,the corresponding integer solutions to (1) are as below:

$$
\begin{aligned}
& x=2(2 k-1)\left(\beta^{2}+\alpha^{2}\right)+4 \alpha \beta\left(2 k^{2}-2 k+1\right), y=4 \\
& w=\left(\alpha^{2}-\beta^{2}\right)(2 k-1), z=2 \alpha \beta
\end{aligned}
$$

Conclusion:

In this paper, an attempt has been made to obtain many non-zero distinct integral solutions to the non-homogeneous cubic equation with four unknowns given by $x^{2}+y^{2}+4\left(\left(2 k^{2}-2 k\right)^{2} z^{2}-4-w^{2}\right)=\left(2 k^{2}-2 k+1\right) x y z$. As cubic equations are rich in variety, the readers may search for obtaining integer solutions to other choices of cubic equations.

REFERENCES

[1] L.E. Dickson, History of Theory of Numbers, Vol.2, Chelsea Publishing company, NewYork, 1952.
[2] L.J. Mordell, Diophantine equations, Academic press, New York, 1969.
[3] M.A. Gopalan, G. Sangeetha, "On the ternary cubic Diophantine equation $y^{2}=D x^{2}+z^{3} "$, Archimedes J.Math 1(1), 2011, 7-14.
[4] L.E. Dickson, History of Theory of Numbers, Vol.2, Chelsea Publishing company, NewYork, 1952
[5] M.A. Gopalan, B. Sivakami, "Integral solutions of the ternary cubic equation $4 x^{2}-4 x y+6 y^{2}=\left((k+1)^{2}+5\right) w^{3} "$, Impact J.Sci.Tech, Vol.6, No.1, 2012, 15-22.
[6] M.A. Gopalan, B. Sivakami, "On the ternary cubic Diophantine equation $2 \mathrm{xz}=\mathrm{y}^{2}(\mathrm{x}+\mathrm{z})$ ", Bessel J.Math 2(3), 2012, 171-177.
[7] S. Vidyalakshmi, T.R. Usharani, M.A. Gopalan, "Integral solutions of nonhomogeneous ternary cubic equation $a x^{2}+b y^{2}=(a+b) z^{3} "$, Diophantus J.Math 2(1), 2013, 31-38.
M.A. Gopalan, K. Geetha, "On the ternary cubic Diophantine equation $x^{2}+y^{2}-x y=z^{3}$ ", Bessel J.Math., 3(2), 2013,119-123.
[9] M.A. Gopalan, S. Vidhyalakshmi, A.Kavitha "Observations on the ternary cubic equation $x^{2}+y^{2}+x y=12 z^{3} "$, Antartica J.Math 10(5), 2013, 453-460.
[10] M.A. Gopalan, S. Vidhyalakshmi, K. Lakshmi, "Lattice points on the nonhomogeneous cubic equation $\mathrm{x}^{3}+\mathrm{y}^{3}+\mathrm{z}^{3}+(\mathrm{x}+\mathrm{y}+\mathrm{z})=0$ ", Impact J.Sci.Tech, Vol.7, No.1, 2013, 21-25.
[11] M.A. Gopalan, S. Vidhyalakshmi, K. Lakshmi "Lattice points on the non-homogeneous cubic equation $\mathrm{x}^{3}+\mathrm{y}^{3}+\mathrm{z}^{3}-(\mathrm{x}+\mathrm{y}+\mathrm{z})=0$ ", Impact J.Sci.Tech, Vol.7, No1, 2013, 51-55,
[12] M.A. Gopalan, S. Vidhyalakshmi, S. Mallika, "On the ternary non-homogenous cubic equation $x^{3}+y^{3}-3(x+y)=2\left(3 k^{2}-2\right) z^{3} "$, Impact J.Sci.Tech, Vol.7, No.1, 2013, 4145.
[13] S. Vidhyalakshmi, M.A. Gopalan, S. Aarthy Thangam, "On the ternary cubic Diophantine equation $4\left(x^{2}+x\right)+5\left(y^{2}+2 y\right)=-6+14 z^{3}$ " International Journal of Innovative Research and Review (JIRR), Vol 2(3)., pp 34-39, July-Sep 2014
[14] M.A. Gopalan, N. Thiruniraiselvi and V. Kiruthika, "On the ternary cubic diophantine equation $7 x^{2}-4 y^{2}=3 z^{3} "$, IJRSR, Vol.6, Issue-9, Sep-2015, 6197-6199.
[15] M.A. Gopalan, S. Vidhyalakshmi, J. Shanthi, J. Maheswari, "On ternary cubic diophantine equation $3\left(x^{2}+y^{2}\right)-5 x y+x+y+1=12 z^{3}$ ", International Journal of Applied Research, 1(8), 2015, 209-212.
[16] R. Anbuselvi, K. Kannaki, "On ternary cubic diophantine equation $3\left(x^{2}+y^{2}\right)-5 x y+x+y+1=15 z^{3} "$, IJSR, Vol.5, Issue-9, Sep 2016, 369-375.
[17] G. Janaki, C. Saranya, "Integral solutions of the ternary cubic equation $3\left(x^{2}+y^{2}\right)-4 x y+2(x+y+1)=972 z^{3} "$, IRJET, Vol.04, Issue 3, March 2017, 665-669.
[18] S. Vidhyalakshmi, T.R. Usha Rani, M.A. Gopalan, V. Kiruthika, "On the cubic equation with four unknowns $\mathrm{x}^{3}+\mathrm{y}^{3}=14 \mathrm{zw}^{2} "$, IJSRP, Volume 5, Issue 3, March 2015, 1-11.
[19] M.A. Gopalan, S. Vidhyalakshmi, G. Sumathi, "On the homogeneous cubic equation with four unknowns $\mathrm{X}^{3}+\mathrm{Y}^{3}=14 \mathrm{Z}^{3}-3 \mathrm{~W}^{2}(\mathrm{X}+\mathrm{Y})$ ", Discovery, 2(4), 2012, 17-19.
[20] S. Vidhyalakshmi, M.A. Gopalan, A. Kavitha, "Observation on homogeneous cubic equation with four unknowns $\mathrm{X}^{3}+\mathrm{Y}^{3}=7^{2 \mathrm{n}} \mathrm{ZW}^{2}$ ", IJMER, Vol.3, Issue 3, May-June 2013, 1487-1492.
[21] M.A. Gopalan, S. Vidhyalakshmi, E. Premalatha, C. Nithya, "On the cubic equation with four unknowns $x^{3}+y^{3}=31\left(k^{2}+3 s^{2}\right) z w^{2} "$, IJSIMR, Vol.2, Issue 11, Nov-2014, 923-926.
[22] M.A. Gopalan, S. Vidhyalakshmi, J. Shanthi, "On the cubic equation with four unknowns $x^{3}+4 z^{3}=y^{3}+4 w^{3}+6(x-y)^{3} "$, International Journal of Mathematics Trends and Technology, Vol 20, No.1, April 2015, 75-84.
[23] Dr. R. Anbuselvi, K.S. Araththi, "On the cubic equation with four unknowns $\mathrm{x}^{3}+\mathrm{y}^{3}=24 \mathrm{zw}^{2} "$, IJERA, Vol.7, Issue 11 (Part-I), Nov-2017, 01-06.
[24] E.Premalatha, M.A.Gopalan, "On Homogeneous Cubic Equation with Four Unknowns $x^{3}+y^{3}=13 z^{2}{ }^{2}$, International Journal of Advances in Engineering and Management (IJAEM), Volume 2, Issue 2, 2020, Pp: 31-41.

