
 International Conference on Applied Soft Computing Techniques ICASCT

ISSN: 2455-1341

 Fast and fault tolerant routing algorithm for Network

Varun V., Raghunandan Menon K.., Karthigha Balamurugan

Department of Electronics and Communication Engineering, Amrita School of Engineering, Coimbatore, India

varun1995v@hotmail.com, rnmenon95@gmail.com,b_karthigha@cb.amrita.edu

 Abstract - Given the rapid progress of technology, transistors

are being scaled down at an aggressive pace. The digital designs

that are built using such entities are thus, more complex, compact

and integrated. The same can be said of the communications

systems that facilitates interaction between the various

components like the IP cores, input ports, first in first out (FIFO)

buffers, decoders, a crossbar, a routing table and output ports,

allowing them to function synergistically as a whole. One such

popular technology is the Network-On-Chip (NoC), which makes

inter- elemental communication very efficient. As the dimensions

of the buffers and cores reach atomic proportions, they become

more vulnerable to faults due to gate oxide breakdown, ageing,

electric field variations, negative bias temperature instability [1]

and circuit breaks (due to overheating of circuit elements). As

such, attention needs to be given to the network technology to

keep it robust and fault-tolerant, preserving its efficiency as

much as possible even in the face of faults. Keeping this in mind,

a routing algorithm with rerouting option is proposed, which

covers deadlocks and wire/router faults, thereby raising

tolerance. The algorithm, named XY-Cruise algorithm, promises

to determine the shortest path in a mesh topology based network

in the presence of faults and deadlocks, as well as to

suitable architecture to realize the algorithm for the proposed

rerouting purpose.

Index terms – Fault tolerance, networks-on-chip

routing algorithms, rerouting

I. INTRODUCTION

Continuously shrinking transistor dimensions enable ever

increasing density on modern microchips: each new

technology node facilitates additional cores in chip

multiprocessors. For instance, the Intel SCC contains 48 cor

[2], the Tilera Tile64 has 64 cores [3], and the experimental

Intel Polaris chip comparison as many as 80 cores

may have over a hundred, as is the case of ASOCS ModemX,

which consists of a maximum of 128 cores and the Nvidia

Fermi, which comprises 448 cores [5]. High core numbers

highlight efficient, faultless and scalable interconnects that are

capable of providing communication among the processor

cores. However, crossbar interconnects and system bus

communication [6] – [9] facilities have not been scaled

efficiently enough, as has been done for processors. As the

scope and range of microprocessor applications widen, they

International Conference on Applied Soft Computing Techniques ICASCT

 http://www.engjournal.org

Fast and fault tolerant routing algorithm for Network

 On-Chip
Varun V., Raghunandan Menon K.., Karthigha Balamurugan

Communication Engineering, Amrita School of Engineering, Coimbatore, India

Amrita Vishwa Vidyapeetham, India

varun1995v@hotmail.com, rnmenon95@gmail.com,b_karthigha@cb.amrita.edu

Given the rapid progress of technology, transistors

The digital designs

that are built using such entities are thus, more complex, compact

and integrated. The same can be said of the communications

stems that facilitates interaction between the various

input ports, first in first out (FIFO)

and output ports,

allowing them to function synergistically as a whole. One such

Chip (NoC), which makes

elemental communication very efficient. As the dimensions

of the buffers and cores reach atomic proportions, they become

more vulnerable to faults due to gate oxide breakdown, ageing,

ture instability [1]

and circuit breaks (due to overheating of circuit elements). As

such, attention needs to be given to the network technology to

tolerant, preserving its efficiency as

h as possible even in the face of faults. Keeping this in mind,

a routing algorithm with rerouting option is proposed, which

covers deadlocks and wire/router faults, thereby raising fault

Cruise algorithm, promises

ermine the shortest path in a mesh topology based network

as well as to develop a

suitable architecture to realize the algorithm for the proposed

 (NoC), reliability,

Continuously shrinking transistor dimensions enable ever-

increasing density on modern microchips: each new

technology node facilitates additional cores in chip

e Intel SCC contains 48 cores

, and the experimental

mparison as many as 80 cores [4]. Some

may have over a hundred, as is the case of ASOCS ModemX,

cores and the Nvidia

. High core numbers

highlight efficient, faultless and scalable interconnects that are

capable of providing communication among the processor

cores. However, crossbar interconnects and system bus

facilities have not been scaled

efficiently enough, as has been done for processors. As the

applications widen, they

become more demanding where performance parameters such

as speed of data transfer amongst the cores, latency of

operations and tolerance to faults –

are concerned. In the present situation, communication

networks are not designed to the point that they can deal

effectively with the intensity and the

that the applications require. As a result, this leads to

performance degradation, such as crowding of the network

channels with data bits, overheating of the components leading

to circuit breakage, increasing latency, inefficient m

utilization and so on. Moreover, since mesh networks are the

popular choice of topology on NoCs, such degradation could

adversely affect the uniformity and the general structure of the

mesh topology. NoCs do away with these problems with fast,

scalable communication facilitated by small, distrib

packet-switched routers [6]. As shown in Fig.

communication medium on an Integrated Circuit, linking the

various IP cores on the chip. Its architecture consists of

multiple segments of wires, routers

buffers, a crossbars and network interface

in various topologies like the mesh and torus. A network

interface (NI) module transforms data packets generated from

the client logic (processor cores) into

control digits (flits) [10].

In the design of NoCs, mainly the r

its baseline algorithm decide their area and power budget

area saving and efficient usage of router buffers, shared queue

is used in Wormhole technique [7]

deadlock is possible. In another work, virtual channel router

architecture is proposed in which each port is linked to

Fig. 1 A 2 dimensional 3x3 Network-on-Chip (NoC) with the mesh topology

International Conference on Applied Soft Computing Techniques ICASCT-2018

 Page 1

Fast and fault tolerant routing algorithm for Network-

Communication Engineering, Amrita School of Engineering, Coimbatore, India

varun1995v@hotmail.com, rnmenon95@gmail.com,b_karthigha@cb.amrita.edu

become more demanding where performance parameters such

transfer amongst the cores, latency of

 both physical and logical –

In the present situation, communication

networks are not designed to the point that they can deal

effectively with the intensity and the magnitude of operations

that the applications require. As a result, this leads to

performance degradation, such as crowding of the network

channels with data bits, overheating of the components leading

to circuit breakage, increasing latency, inefficient memory

utilization and so on. Moreover, since mesh networks are the

popular choice of topology on NoCs, such degradation could

adversely affect the uniformity and the general structure of the

do away with these problems with fast,

le communication facilitated by small, distributed,

s shown in Fig. 1, NoC is a

communication medium on an Integrated Circuit, linking the

Its architecture consists of

routers, input/output ports,

and network interface, which are arranged

in various topologies like the mesh and torus. A network

interface (NI) module transforms data packets generated from

the client logic (processor cores) into fixed-length flow-

In the design of NoCs, mainly the router architecture and

area and power budget. For

area saving and efficient usage of router buffers, shared queue

[7]. But the problem of

work, virtual channel router

architecture is proposed in which each port is linked to

Chip (NoC) with the mesh topology.

 International Conference on Applied Soft Computing Techniques ICASCT

ISSN: 2455-1341

number of virtual buffers [11] – [12]. This may avoid

deadlock but results with increased power and area. As a

result, many buffers are active all the time, but only

them are utilized at a time, so that most of them are idle. In

any case, NoCs forms a single and acutely fragile point of

failure in a chip multiprocessor (CMP) system. Unlike the

cores in a CMP, which are uniform, distributed, and therefore

inherently redundant, there is only one communication

medium in the chip, that is, one integrated

constitutes a pronounced weakness in the presence of faults

[13]. Unreliable silicon substrates and their accompanying

transistors that have been scaled down by a large factor,

threaten the reliability and efficiency of NoC

where a single transistor failure could be a severe liability unto

the malfunctioning of the entire system [14]. The occurrence

of failures in such technologies is expected to become

frequent, given the range of their applications, leading to

system malfunction and even causing security flaws

Several research works have been done to develop

efficient routing algorithms on the NoCs. A protocol that is

commonly employed in network routing is the distance

protocol [16], which necessitates that a router update its

neighbors with topology changes periodically. Compared

to link-state protocols, which require a router to inform all the

nodes in a network of topology changes, distance

routing protocols have less

complexity and message overhead. The term

vector refers to the fact that the protocol

manages vectors (arrays) of distances to other nodes in the

network, which is crucial to the success of the protocol.

One of the algorithms meant for mesh and torus

topologies is Vicis, as proposed by Andrew DeOrio et al.

Vicis employs a reconfigurable router architecture a

routing algorithm. It takes advantage of the redundancy

inherent in on-chip networks. As a distributed in

solution, Vicis has the advantage of being able to tolerate

many faults, including failures in the components

enables graceful performance degradation when transistors

inevitably fail.

Next the XY routing algorithm, as proposed by Wang

Zhang et al. [17], is a distributed deterministic routing

algorithm. For a NoC with the two dimensional mesh

topology, each router can be identified by its X and Y

coordinates. The XY routing algorithm compares the current

router address, say (Cx,Cy), to the destination router address,

say, (Dx,Dy), of the packet. The destination address is

mentioned in the header flit. Flits are routed to the core port of

the router when the address of the current router matches the

destination address. The routing request for this packet will

remain active until a connection is established in some future

execution of the procedure in this router.

International Conference on Applied Soft Computing Techniques ICASCT

 http://www.engjournal.org

This may avoid

deadlock but results with increased power and area. As a

all the time, but only a few of

them are utilized at a time, so that most of them are idle. In

a single and acutely fragile point of

failure in a chip multiprocessor (CMP) system. Unlike the

cores in a CMP, which are uniform, distributed, and therefore

ently redundant, there is only one communication

medium in the chip, that is, one integrated NoC, which

constitutes a pronounced weakness in the presence of faults

. Unreliable silicon substrates and their accompanying

down by a large factor,

NoC infrastructure,

where a single transistor failure could be a severe liability unto

. The occurrence

cted to become

frequent, given the range of their applications, leading to

system malfunction and even causing security flaws [15].

Several research works have been done to develop

A protocol that is

commonly employed in network routing is the distance-vector

, which necessitates that a router update its

neighbors with topology changes periodically. Compared

, which require a router to inform all the

nodes in a network of topology changes, distance-vector

routing protocols have less computational

message overhead. The term distance

refers to the fact that the protocol

of distances to other nodes in the

network, which is crucial to the success of the protocol.

One of the algorithms meant for mesh and torus

topologies is Vicis, as proposed by Andrew DeOrio et al. [13].

Vicis employs a reconfigurable router architecture and a

routing algorithm. It takes advantage of the redundancy

chip networks. As a distributed in-hardware

solution, Vicis has the advantage of being able to tolerate

many faults, including failures in the components. Vicis thus

enables graceful performance degradation when transistors

he XY routing algorithm, as proposed by Wang

, is a distributed deterministic routing

with the two dimensional mesh

, each router can be identified by its X and Y

coordinates. The XY routing algorithm compares the current

router address, say (Cx,Cy), to the destination router address,

say, (Dx,Dy), of the packet. The destination address is

Flits are routed to the core port of

the router when the address of the current router matches the

destination address. The routing request for this packet will

remain active until a connection is established in some future

Fig. 2 A 3x3 mesh network with deadlock between routers 1 and 4

A novel version of the XY routing algorithm, namely

dynamic XY (DyXY) algorithm, which provides adaptive

routing based on congestion conditions in the vicinity, and

ensures both deadlock-free and livelock

proposed by Ming Li et al. [18]

algorithm, the packet travels only the shortest path between

the source and the destination. If multiple shortest paths are

available then the router chooses the path for the packet

depending on the congestion condition of every router in the

network. The congestion condition of a router is determined

by the number of cells that are occupie

and each stress value is updated based on an event

mechanism.

Hence from the above studies, it is noticed that t

Vector algorithm does not determine the most convenient (the

shortest) path between the source and the destination routers in

a network when deadlocks (data moves to and fro between

node 1 and 4 as the connection of the mentioned nodes with 2

and 5 are broken which is represented in

are present, thus consuming precious time. The XY

algorithm is also sensitive to deadlocks and gets the flow

caught in the endless loop in the deadlock. Besides, Vicis, on

the other hand, does not provide the shortest path, rather it

provides a faultless path when failures occur in the network.

While one algorithm is focused on determining the shortest

path from the source node to the destination node, the other is

focused on ensuring that the path of flow does not have any

faults.

Given a situation of decreasing transistor reliability and

increasing failures, the objective of the

provide a solution that allows for smooth and uninterrupted

data transfer between routers in the network even in the

presence of faults such as wire and/or router damage,

manufacturing defects and deadlocks.

with rerouting option is thus intended to be designed, which

covers such faults - thereby raising fault tolera

section explains the methodology of the proposed algorithm,

what it is meant to do and about its various features.

International Conference on Applied Soft Computing Techniques ICASCT-2018

 Page 2

A 3x3 mesh network with deadlock between routers 1 and 4.

A novel version of the XY routing algorithm, namely

dynamic XY (DyXY) algorithm, which provides adaptive

routing based on congestion conditions in the vicinity, and

free and livelock-free routing, was

[18]. Using DyXY routing

algorithm, the packet travels only the shortest path between

ation. If multiple shortest paths are

available then the router chooses the path for the packet

depending on the congestion condition of every router in the

network. The congestion condition of a router is determined

by the number of cells that are occupied, in all input buffers,

and each stress value is updated based on an event-driven

Hence from the above studies, it is noticed that the Distance

Vector algorithm does not determine the most convenient (the

shortest) path between the source and the destination routers in

data moves to and fro between

node 1 and 4 as the connection of the mentioned nodes with 2

and 5 are broken which is represented in Fig. 2) and livelocks

are present, thus consuming precious time. The XY-Routing

algorithm is also sensitive to deadlocks and gets the flow

caught in the endless loop in the deadlock. Besides, Vicis, on

d, does not provide the shortest path, rather it

provides a faultless path when failures occur in the network.

While one algorithm is focused on determining the shortest

path from the source node to the destination node, the other is

at the path of flow does not have any

ation of decreasing transistor reliability and

objective of the proposed work is to

provide a solution that allows for smooth and uninterrupted

routers in the network even in the

presence of faults such as wire and/or router damage,

acturing defects and deadlocks. A routing algorithm

with rerouting option is thus intended to be designed, which

thereby raising fault tolerance. The next

section explains the methodology of the proposed algorithm,

its various features.

 International Conference on Applied Soft Computing Techniques ICASCT-2018

ISSN: 2455-1341 http://www.engjournal.org Page 3

II. THE XY-CRUISE ALGORITHM

Inspired by Vicis’ basic rerouting step and the DyXY

routing algorithm, the proposed XY- Cruise algorithm uses the

X and Y coordinates of the source and the destination routers,

so as to obtain the shortest path between the two. When the

said path is found to be faulty, data travels through the next

nearest feasible path. This is the gist of the algorithm that

combines finding the shortest path with rerouting mechanism.

Deadlocks are avoided because once data has travelled a

certain path that contains potential deadlocks, it doesn’t

retrace the same path. The term XY- Cruise was coined based

on the routing function of the XY routing protocol coupled

with the concepts of fast routing and rerouting in a faulty

network. It is accompanied by code complexity that increases

the processing speed. The data ‘cruises’ through successfully

in the shortest time. Hence, the XY- Cruise algorithm came to

be named as such.

The algorithm promises to:

1. Find the shortest path in a mesh topology based network

2. Reroute data within the network when other wires/nodes

are broken

3. Compute the shortest path even in the presence of faults

4. Avoid infinite loops and deadlocks

The following is the pseudocode of the proposed XY-Cruise

algorithm.

 sync_routers()

 for every router

 status=status_check(router,wires)

 for every destination

 basic_route_step(dest,status)

 status_check(router, wires)

 for this router

 state=check_condition_wires(N,E,W,S)

 return state

 basic_route_step(dest,status)

 current=source router;

 routing_process:

 while(dest is not routed)

 if (dest is current)

 routing_complete()

 else

 check_neighbors(router,status)

 neighbor=find_nearest_neighbor(router,status)

 data_flow(current,neighbor)

 current=neighbor

 jump to routing_process

The ‘basic_route_step’ function of the proposed XY-

Cruise algorithm (inspired by Vicis’ basic routing step

function) is the crux of the entire XY- Cruise algorithm. It sets

the source router as the current router, then begins the routing

process (‘routing_process’ in the pseudocode). Here, as long

as the destination router has not been reached (that is, the

condition ‘dest is current’ is false), the statuses of the

neighbours are checked and accordingly the one that lies on

the shortest path is chosen so that data can flow from the

current router (the ‘source’ in the beginning) to this neighbour.

Then this ‘neighbour’ is set as the current router and the

condition (dest is current) is checked and accordingly, the

routing process continues or the routing is complete.

Case 1 – Finding Shortest Path

For a perfect 3x3 mesh network with no faults, the

proposed XY- Cruise algorithm determines the shortest path

for a particular source - destination node pair. The path

travelled is displayed in Fig. 3. The functioning is based on the

coordinates of the two routers involved. The code functions

either with X priority or with Y priority. Here, Y priority is

assumed. According to the algorithm:

1. Routers are numbered 1 to 9 like a computer’s

number-pad.

2. Data is to flow from router 1 (1,1) to router 9 (3,3)

3. Data flows from router 1 (1,1) to router 4 (1,2)

because destination (3,3) has a higher Y co-ordinate

4. Then it flows from router 4 (1,2) to router 7 (1,3)

because destination (3,3) has a higher Y co-ordinate

5. Then it flows from router 7 (1,3) to router 8 (2,3)

because destination (3,3) has a higher X coordinate

given Y coordinates are equal

6. Then it flows from router 8 (2,3) to router 9 (3,3)

because destination (3,3) has a higher X coordinate

given Y coordinates are equal

Case 2 – Rerouting a Shortest Path for a Faulty Network

(single fault)

 International Conference on Applied Soft Computing Techniques ICASCT-2018

ISSN: 2455-1341 http://www.engjournal.org Page 4

 Fig. 3 A 3x3 Mesh Network with dataflow from (1,1) to (3,3) (Case 1)

For a 3x3 mesh network with a single fault, the XY-

Cruise algorithm determines the next shortest path for a

particular source - destination node pair when the fault occurs

in the original shortest path. The path travelled is displayed in

Fig. 4. Here, Y priority is assumed. Consider the dotted line

(between routers 1 and 4) as the broken link in the network.

There will be a slightly different path yet, it will still remain as

the shortest path. According to the algorithm:

1. Data is to flow from router 1 (1,1) to router 9 (3,3)

2. Data flows from router 1 (1,1) to router 2 (2,1)

because the link to router 4 (1,2) is broken (the Y-

direction movement is not possible, so movement

occurs in the X direction). It is rerouted here to the

next shortest path

3. Then it flows from router 2 (2,1) to router 5 (2,2)

because destination (3,3) has a higher Y co-ordinate

(Y priority)

4. Then it flows from router 5 (2,2) to router 8 (2,3)

because destination (3,3) has a higher Y coordinate

5. Then it flows from router 8 (2,3) to router 9 (3,3)

because destination (3,3) has a higher X coordinate

given Y coordinates are equal

6. In case X coordinate is given higher priority, the path

travelled is:

 1 -> 2 -> 3 -> 6 -> 9

The path travelled is of the same length in either case as the

number of routers involved in the routing process is five

including source and destination.

Case 3 – Avoiding Deadlocks

For a faulty 3x3 mesh network with two faults (the links

between the routers 1-2 and 4-5), the XY-Cruise algorithm

determines the next shortest path for a particular source -

Fig. 4 A 3x3 Mesh Network with dataflow from (1,1) to (3,3) with a

single fault (Case 2)

 (a) Deadlock (Conventional (b) No deadlock (Proposed XY-

 XY-Routing algorithm) Cruise algorithm)

Fig. 5 Faulty network with deadlock problem and its solution (Case 3)

destination node pair when the fault(s) occurs in the original

shortest path and also when a possibility of looping (deadlock)

occurs while trying to find the shorter path.

For instance, consider the conventional XY-routing

algorithm. When data travels from router 1 to router 4 and

then when it wants to reach router 3 since the links to router 2

and router 5 are broken, the XY-routing algorithm tries to

jump to the router closer to the destination, as shown in Fig.

5a. Thus, taking Y priority, data travels again to router 1 (1,1)

because it is closer to router 3 (3,1) than router 7 (1,3) is. In

the next step, since data can’t travel to router 2 (2,1) because

the link is broken. Thus it goes to router 4. An infinite loop

arises as a result.

However, in the XY-Cruise algorithm, router 1 (1,1) is

‘locked’ – that is, data does not travel back to this router -

once the code discovers that it is a potential deadlock-inducing

router. So, it reroutes accordingly to router 7 (1,3) and then the

shortest path is computed from there on. Thus, deadlocks and

 International Conference on Applied Soft Computing Techniques ICASCT-2018

ISSN: 2455-1341 http://www.engjournal.org Page 5

loops are avoided that way. The path travelled is displayed in

Fig. 5b. Here, Y priority is assumed. Consider the dotted line

as the broken link in the network. There will be a slightly

different path yet, it will still remain as the shortest path. The

Fig. 5a demonstrates a deadlock-case when the conventional

XY-routing algorithm is employed, while the problem is

resolved with the proposed XY-Cruise algorithm, as seen in

Fig. 5b.

III. RESULTS AND COMPARISON

In a GCC 64-bit C++ compiler, the XY-Cruise algorithm

took lesser time to establish a shortest path flow of data in a

3x3 mesh for a sample case of flow between routers 1 and 9,

as compared to the conventional Distance Vector algorithm

(DVA), under the same conditions.

A. Distance Vector Algorithm (~90 ms)

– 1 to 2 to 3 to 6 to 9 -> Weight: 4

– 1 to 4 to 7 to 8 to 9 -> Weight: 4

– 1 to 2 to 3 to 6 to 5 to 8 to 9 -> Weight : 6

– Time required to complete result: 2 x 4

cycles + 1x 6 cycles + other possible paths

B. Proposed XY-Cruise Algorithm (~20 ms)

– 1 to 4 to 7 to 8 to 9: Weight 4 (or)

– 1 to 2 to 3 to 6 to 9: Weight 4

– Time required to compute result: 4 cycles

From the above observations, it can be inferred that the

proposed XY-Cruise algorithm utilises lesser clock cycles to

execute (lesser by at least 10 clock cycles) than the

conventional Distance Vector algorithm.

Table I shows the results of compiling the XY-Cruise

Algorithm on the GCC compiler for transfer of 4 bits of data,

where up to four faults occur in the network. The distance

vector algorithm consumes the same time no matter how it

travels because of its multi-path nature. Be it faulty or

faultless, all possible paths are calculated and the ideal path is

selected based on least weight of data travel.

As can be observed, the XY-Cruise algorithm executes

faster than the Distance Vector algorithm on a GCC compiler

for routing data of 4 bits, by nearly 4.48 times for a faultless

network. That is, computation time is reduced by 77.6%when

the proposed XY-Cruise algorithm is employed. Similarly,

computation time is reduced by 76.5%, 71.9%, 68.4% and

66.7% in the presence of a single, two, three and four faults

respectively, in the network. Fig. 6 shows the results of

compiling and executing the codes for the Distance Vector and

XY-Cruise algorithm (with and without deadlocks) for routing

data of sizes 4 and 8 bits.

TABLE I

 Comparison of the time taken by the XY-Cruise and Distance Vector

algorithms

Number of faults Time in milliseconds (ms)

 Proposed XY-

Cruise Algorithm

Distance Vector

Algorithm

0 20.7 92.8

1 21.8 92.8

2 26.0 92.8

3 29.3 92.8

4 30.9 92.8

TABLE II

Comparison of the time taken by the proposed XY-Cruise and Distance

Vector algorithms

Number of

faults

Time taken in microseconds (us)

Proposed XY-

Cruise

Algorithm

Distance Vector

Algorithm

0 0.11 0.47

1 0.11 0.47

2 0.13 0.47

3 0.15 0.47

4 0.16 0.47

For Fig. 6 let the following denotes the legend:

Series 1: Distance Vector algorithm without deadlock

Series 2: XY-Cruise algorithm without deadlock

Series 3: XY-Cruise algorithm with deadlock

As the compilation results shown in Fig. 6, the proposed

XY-Cruise algorithm is faster than the conventional Distance

Vector Algorithm by slightly more than three times where the

data to be routed contains 4 bits and approximately three times

for the transfer of 8 bits of data. The slight variation arises due

to the difference in bus sizes of the bit-streams and the

involved complexity in routing them without errors or data

loss. Table II shows the observations recorded when the XY-

Cruise Algorithm (for routing data of 4 bits’ size), was coded

in Verilog, on the behavioural data flow model, and

synthesized on Vivado 2014.4 and burnt into a Zynq 7000

Board.

*From the power report generated for XY - Cruise algorithm

Total On-Chip Power (W) = 0.119

 *From the power report generated for distance vector

algorithm Total On-Chip Power (W) = 0.124

It has been observed that the power consumed by the

Zynq 7000 board when programmed with the proposed XY-

Cruise algorithm is 0.119W, as compared to the corresponding

value of 0.124W in the case of the conventional Distance

Vector algorithm. That is, a reduction in power consumption

of 4% occurs when the XY-Cruise algorithm is employed.

 International Conference on Applied Soft Computing Techniques ICASCT-2018

ISSN: 2455-1341 http://www.engjournal.org Page 6

Also in hardware level the following observations are

made and consolidated as follows: The computation time falls

by 76.5% when the XY- Cruise algorithm is employed for a

faultless network, and by 76.5%, 72.3%, 68% and 65.9% for

the occurrence of a single, two, three and four faults in the

network, respectively.

Next when comparing the proposed XY- Cruise algorithm

with Vicis in terms of overcoming deadlocks, slight

improvement in the performance of the proposed work is

Fig. 6 Graph showing comparison of compilation times of Distance Vector

and XY-Cruise algorithms

TABLE III

Comparison of the success rates of the XY-Cruise and the Vicis algorithms

No. of Faulty

Connecting Wires

in Between

Percentage

Success (XY-C)

Percentage

Success (Vicis)

0 100 100

1 99.91 99.65

2 99.83 99.31

3 99.56 98.87

4 96.85 95.93

Percentage success= [1- (Number of unsuccessful cases/ Total number of

cases)] *100

observed and tabulated in Table III. This improvement is due

to the fact that deadlocks which are not covered by the Vicis

algorithm are resolved by the proposed algorithm.As Table III

shows, on an average, the proposed XY- Cruise algorithm has

0.63% higher fault tolerance than Vicis.

 For the situation where deadlocks occur, Fig. 7 shows the

comparison of the time taken for execution of the Vicis and

the proposed XY-Cruise algorithms for routing data of 4 and 8

bits.

For Fig. 7, let the following denotes the legend:

Series 1: Vicis algorithm with deadlock

Series 2: XY- Cruise algorithm without deadlock

Series 3: XY- Cruise algorithm with deadlock

We take the observations for the Vicis algorithm to be

random (0 in the graph) because Vicis does not give any fixed

value or even a range of values for routing data, considering

that it was not meant to provide the shortest path in the event

of deadlocks, rather only a faultless path.

IV. CONCLUSION

The XY-Cruise algorithm has been presented as a solution

to improve router performance in a network in terms of speed

and fault tolerance, in the event that faults like wire/router

Fig. 7 Graph showing comparison of compilation times of XY-Cruise and

Vicis algorithms

damages and/or deadlocks occur, which is a frequent case due

to nanotransistors. It combines the ideas of the basic routing

function of the Vicis algorithm, which reroutes the network if

and when faults occur, with the concept of XY routing (using

the X and Y coordinates), specifically the Dynamic XY

routing algorithm, in order to provide the shortest path from

the source to the destination .As compilation results using a

GCC compiler show, the proposed XY- Cruise algorithm is

faster than the conventional

Distance Vector Algorithm by slightly more than three

times where the data to be routed contains 4 bits and

approximately three times for the transfer of 8 bits of data.

When synthesized and burnt into a Zynq 7000 board for

routing 4 bits of data, the results show that the XY- Cruise

algorithm is faster than the Distance Vector Algorithm by

approximately three times when no faults occur in the

network, and by around 3, 2.5, 2.1 and 1.8 times for the

occurrence of a single, two, three and four faults in the

network, respectively.

With time, as the applications of network routing become

more and more complex, solutions need to be found to allow

for such functions to be performed while also handling the

increasing occurrences of failures, as and when they do. The

proposed XY-Cruise algorithm is a small step in this direction

and hopefully, in the future, this algorithm can be improvised

to work effectively and efficiently for router mesh topologies

 International Conference on Applied Soft Computing Techniques ICASCT-2018

ISSN: 2455-1341 http://www.engjournal.org Page 7

of orders greater than five, and also for other topologies. Also,

following this train of thought, an XYZ-Cruise (for networks

of three dimensions) could be developed in the future.

REFERENCES

[1] M. A. Alam, “A critical examination of the mechanics of dynamic NBTI

for PMOSFETs,” in Proc. IEDM, March 2003, pp. 32 – 35.

[2] Timothy G. Mattson, Rob F. Van der Wijngaart, Michael Riepen, Thomas

Lehnig, Paul Brett, Werner Haas, Patrick Kennedy, Jason Howard, Sriram

Vangal, Nitin Borkar, Greg Ruhl and Saurabh Dighe “The 48-core SCC

processor: The programmer’s view,” in Proc. of the 2010 ACM/IEEE

International Conference for High Performance Computing, Networking,

Storage and Analysis, Nov. 2010, pp. 1- 11.

[3] Bell, S. et al, “TILE64 processor: A 64-core SoC with mesh

interconnect,” in Proc. ISSCC2008, Feb. 2008.

[4] Vangal, S. R. et al., “An 80-tile sub-100-w teraFLOPS processor in 65-nm

CMOS,” IEEE Journal of Solid-State Circuits, Vol. 43, No. 1, 2008, pp. 29 -

41.

[5] Multi-core Processor, https://en.wikipedia.org/wiki/Multi-core_processor

(2017)

[6] William J. Dally and Brian Towles, “Route packets, not wires: On-chip

interconnection networks,” in Proc. DAC 2001, pp. 684–689.

[7] Pierre Guerrier and Alain Greiner, “A generic architecture for on-chip

packet-switched interconnections” in Proc. DATE 2000, pp. 250–256

[8] Yatin Hoskote , Sriram Vangal, Arvind Singh, Nitin Borkar and Shekhar

Borkar, “A 5-GHz mesh interconnect for a teraflops processor,” IEEE Micro,

2007, Vol. 27, No. 5, pp. 51–61

[9] Shashi Kumar et.al.,“A network on chip architecture and design

methodology,” in Proc. of IEEE Computer Society Annual Symposium ,

VLSI 2002, pp. 117–122.

[10] Networks on Chips: Structure and Design Methodologies,

https://www.hindawi.com/journals/jece/2012/509465/ (2017)

[11]Mehdi Modarressi, Arash Tavakkol and Hamid Sarbazi-Azad, “Virtual

point-to point connections for NoCs,” IEEE Trans. Computer - Aided Design

of Integrated Circuits and Systems, Vol. 29, No. 6, 2010, pp. 855–868.

[12] N.V, Anjali and Somasundaram, K., “Design and Evaluation of Virtual

Channel Router for Mesh-of-Grid based NoC,” in International Conference

on Electronics and Communication System, 2014,

[13] Andrew DeOrio, David Fick, Valeria Bertacco, Dennis Sylvester, David

Blaauw, Jin Hu, Student Member, and Gregory Chen, “A Reliable Routing

Architecture and Algorithm for NoCs”, IEEE Transactions On Computer-

Aided Design Of Integrated Circuits And Systems, Vol. 31, No. 5, May 2012,

pp.726 – 739.

[14] Giovanni De Micheli, “Reliable communication in systems on chips,” in

Proc.41st DAC2004.

[15] Andrea Pellegrini, Valeria Bertacco and Todd Austin, “Fault-based attack

to RSA authentication,” in Proc. DATE 2010.

[16]Distance-vector routing protocol,https:/ /en.wikipedia.org/wiki/Distance-

vector_routing_protocol (2016)

[17] Wang Zhang, Ligang Hou, Jinhui Wang, Shuqin Geng and Wuchen Wu,

“Comparison Research between XY and Odd-Even Routing Algorithm of a 2-

dimension 3x3 Mesh Topology Network-on-Chip”, Global Congress on

Intelligent Systems, 2009, pp. 329 – 333.

[18] Ming Li, Qing-An Zeng and Wen-Ben Jone, “DyXY - A Proximity

Congestion-Aware Deadlock-Free Dynamic Routing Method for Network on

Chip”, in Proc. 43rd ACM/IEEE DAC, 2006, pp. 849-852.

