
International Journal of Research in Engineering Technology -– Volume 1 Issue 3, Mar – Apr 2016

ISSN: 2455-1341 http://www.engjournal.org Page 42

An Effective Usage of Bug Triage in Software

Industry using BM25F algorithm and Naïve Bayes

Text Classification
AnushaSrinivas

1
 , Siddaraju

2

Computer Science, Dr.Ambedkar Institute of Technology, Bangalore

I. INTRODUCTION
One of the interdisciplinary domains is mining.

By this data mining features, problems in software

industry can be dealt. Software repositories, is the

name given for combined documents such as source

code, bugs, emails, and specifications in the modern

software development process. Traditional

approach is not suitable for modern day software

development process. Since data is large scale and

complex.

Some of the real world scenarios and to cover

unseen patterns, interesting information around the

globe can be gained from data mining approach in

their respective fields.

In software industry, bugs are managed by using

bug repository (i.e. cart which stores bug

details).Software bugs are unavoidable and fixing

bugs is expensive process in software development.

Over 45 per cent of cost is spent by the company to

fix the bugs.

Bug tracking systems are deployed by the

software industries to support information gain i.e.

collection and to assist developers to handle bugs.

Textual description of bug and bug details i.e. status

of the bug is reported known as bug report in the

bug repository. Some of the tasks performed by the

usage of bug reports are bug localization, fault

prediction, prevention and some of the other tasks.

Collection of bug reports is known as bug data.

Some of the major concerned issue with respect to

bug data is scalability and quality attributes. Due to

the daily-reported bugs; a large number of new

bugs are warehoused in bug repositories.

II. RELATED WORK
In the paper titled “Who should fix this bug” [1]

the authors propose that Open source development

projects typically support an open bug repository to

which both developers and users can report bugs.

The reports that appear in this repository must be

Abstract:
 Software firms devote over 45 percent of cost in trade with software bugs.A foreseeable step of

setting bugs is known as bug triage, which intentions to correctly assign a developer to a new bug. To

drop the time cost in labor-intensive work, to conduct automatic bug triage different text classification

techniques are applied. In this project, we address the problem of data reduction for bug triage, i.e., how

to improve the quality and reduce the scale and of bug data. We associate (chain) instance selection with

feature selection to simultaneously reduce data scale on the bug dimension and the word dimension. To

apply instance selection and feature selection, previously order of applying must be determined; the

attributes are extracted from historical bug data sets and predictive model for a new bug data set is

built.The results will illustrate that our data reduction can effectually reduce the data scale and bug triage

accuracy can be improved. This work provides one of the leveraging techniques to form reduced and high

quality bug data on data processing which can be used in software development and maintenance.

Keywords —Tokens, IDF (Inverse Document Frequency), BM25F algorithm, Naïve Bayes Text

Classification.

RESEARCH ARTICLE OPEN ACCESS

International Journal of Research in Engineering Technology -– Volume 1 Issue 3, Mar – Apr 2016

ISSN: 2455-1341 http://www.engjournal.org Page 44

triaged to determine if the report is one which

requires attention and if it is, which developer will

be assigned the responsibility of resolving the

report.

In the paper titled “Information needs in bug

reports: Improving cooperation between developers

and users” [2]the authors propose that for many

software projects, bug tracking systems play a

central role in supporting collaboration between the

developers and the users of the software. In our

Project bugs are classified and directly given to

respective developers.

In the paper titled “Reducing the effort of bug

report triage: Recommenders for development-

oriented decisions”[3] the authors propose that A

key collaborative hub for many software

development projects is the bug report repository.

Although its use can improve the software

development process in a number of ways, reports

added to the repository need to be triaged. A triager

determines if a report is meaningful. Meaningful

reports are then organized for integration into the

project's development process. To assist triagers

with their work, this Bug’s presents a machine

learning approach to create recommenders that

assist with a variety of decisions aimed at

streamlining the development process.

III. EASE OF USE
In the current approach first a list of bug reports

across streams namely Eclipse, Mozilla and Open

office are collected and then they are cleaned using

a stream of stop words. Once the clean data is

obtained the tokenization is performed on the bug

reports and text frequency is computed. After

performing IDF computation, Feature Vector is

computed and list of categorical similarities are

measured.

IV. METHODOLOGY
A. Data collection

 It is a process in which bug reports of various

products are collected. Some of the products list

are Mozilla, Firefox, eclipse, open office etc.

All the bugs will be collected as a set {Bug Id,

Component, Priority, Type, Version, Status, and

Description}.

B. Noise Reduction
 It involves eliminating unnecessary words in

the bug report. This is done by the process

known as bug Pre-processing.

1) Bug Pre-processing:This module is used in

order to remove stop words from the bug

description. The stop words used in this project are

standard words given in the web mining forums.

Some of the stop words are of, the, anything, almost,

alone etc.

Fig. 1Collection and Cleaning process

C. Computation

1) Tokenization: Tokenization is a process of

translating the clean bug set into a set of

sequenced tokens. Each token is associated

with a bug in the form { TokenId,

TokenName, BugId, ProductId }

2) Frequency Computation:It is defined as the

number of times a token appears in the

review. The frequency will remove if any

redundancy exists. The frequency is stored in

the format {FreqId, TokenName, Freq,

BugId, ProductId}

3) Score Computation:The Score computation

is performed on per token and is computed

across the bugs by using the formula.

Bug details
Stop word

Analysis

Data

Cleaning
Computation

Module

International Journal of Research in Engineering Technology

ISSN: 2455-1341

{ ScoreId ,Frequency, IDF, Score, BugId,

ProductId).

4) Textual similarity:The textual similarity is

computed by comparing 2 bugs with respect

to title and description

.

D. Classification
1) Duplicate Bug Detection:The algorithm is

used to detect the whether the 2 bugs are

similar or not. The algorithm finds the

intersection sum and union sum and then the

bugs are found in terms of grouping.

2) Naïve Bayes Text Classification:

process is used to find the text classification

of the bugs. The algorithm computes the

probability that a bug belongs to a class

{c1,c2,c3,c4}.Each class represents the

unique feature then the algorithm computed

contingency and enhanced contingency and

classifies the bugs.

Fig. 2 Methodology Overview

V. SYSTEM DESIGN

A. BM25F algorithm.

BM25 (BM stands for Best Matching) is

a ranking function used in search engines

International Journal of Research in Engineering Technology -– Volume 1 Issue 3, Mar

 http://www.engjournal.org

{ ScoreId ,Frequency, IDF, Score, BugId,

The textual similarity is

computed by comparing 2 bugs with respect

he algorithm is

used to detect the whether the 2 bugs are

similar or not. The algorithm finds the

intersection sum and union sum and then the

bugs are found in terms of grouping.

Naïve Bayes Text Classification:This

process is used to find the text classification

of the bugs. The algorithm computes the

probability that a bug belongs to a class

{c1,c2,c3,c4}.Each class represents the

unique feature then the algorithm computed

contingency and enhanced contingency and

(BM stands for Best Matching) is

search engines, to

rank matching documents based on

their relevance to a given search query. It is

worked (based) on the probabilistic retrieval

framework.

 BM25 is retrieval function that gives

ranking to set of documents

items which appears on each document, the

interrelationship between query items

doesn’t have much significance in thi

algorithm.BM25 is a combination function

i.e. it is family of scoring function with slight

variation in components and parameters.

 The following are the steps for the algorithm

� Collect the Bugs

� Perform the Data Cleaning on the Bugs

� Perform the tokenization and convert the

clean bugs into set of tokens

� Measure the Frequency

� Compute the Score using the following

equations for the bugs

(

)(75.0

2.1k1

length document average

,

)(),(
1

qiIDFb

avgdl

documentoflengthD

FrequencyDocumentInverseIDF

frequencyf

qf

qIDFQDscore
n

i

i

i

=

=

=

=

=

=

= ∑
=

i

i

i

i

documentsofnumberqn

documentsofnumberN

qn

qnN
qIDF

=

=

+

+−
=

)(

0)(

)(
log)(

� The textual similarity is computed by comparing 2

bugs with respect to title and description

Textual title (d1, d2)=BM25F(d1,d

Where,

 d1=document1

 d2=document2

� The union set between the bugs is measured

� The intersection set between the bugs is measured

Mar – Apr 2016

Page 45

ank matching documents based on

to a given search query. It is

on the probabilistic retrieval

BM25 is retrieval function that gives

of documents based on query

items which appears on each document, the

interrelationship between query items

doesn’t have much significance in this

5 is a combination function

i.e. it is family of scoring function with slight

variation in components and parameters.

The following are the steps for the algorithm

Perform the Data Cleaning on the Bugs

tokenization and convert the

clean bugs into set of tokens

Measure the Frequency

Compute the Score using the following

equations for the bugs

)

collection text in thelength

).()1(

)1(.),(

1

1

Frequency

avgdl

D
bbkD

kDqf i

+−+

+

iqcontainingdocuments

documents

+

5.0

5.0

The textual similarity is computed by comparing 2

to title and description

,d2)

The union set between the bugs is measured

The intersection set between the bugs is measured

International Journal of Research in Engineering Technology -– Volume 1 Issue 3, Mar – Apr 2016

ISSN: 2455-1341 http://www.engjournal.org Page 46

� The similarity score is also computed.

B. Naïve Bayes classifier.

It is simple technique used for constructing

class of classifiers.

Naive Bayes classifiers can perform

operation on an arbitrary number of

independent variables whether they are

continuous or categorical.

The advantage of this technique is only finite

amount of training data is required to perform

classification operation.

1) Naïve Bayes Classifier

� Obtains the bugs from the collection

� For each of the bugs the probability is

computed using the following formula

41

)|(

≤≤

=

i

i

i

C

WordsofNumberTotal

CcategoryofwordsofNumber
CbP

� Also the negative probability is also

computed for each of the bug

� The probability computation is computed

and constructed as below

{Probability, bugID, CatName, Negative

Probability, Count, Total Words }

Where,

BugID -ID of the Bug

Probability- Positive Probability

CatName - c1,c2,c3 and c4

Negative Probability - Finding the

negative probability

Count- Number of words for the

category

Total Words- Number of words

� The contingency is measure using the

following

)4()3()2(

)4()3()2(

111

1

1

cpcpcpOtherNegativeTotal

cpcpCpOtherPositiveTotal

c

c

++=

++=

� The enhanced contingency is measured using

the following equation

1

1

1

11

)1(

)1(

cc

cc

OtherPositiveTotalcpRatioCategoryOther

OtherNegativeTotalcpRatioCategoryPositive

+=

+=

� The bugs are then classified by order by

positive category ratio maximum and other

category ratio minimum

� The count for each category bugs is then

made.

VI. RESULTS

 Using the methods described in the previous

section the results obtained are discussed in this

section.

 Bugs from several standard products like Mozilla,

Firefox are collected in this project.

 Below figure shows the details about the number

of bugs obtained from product Firefox (fig. 3).

Fig.3 Number of raw bugs before processing

Fig. 4 Number of bugs after all methodology processes

International Journal of Research in Engineering Technology -– Volume 1 Issue 3, Mar – Apr 2016

ISSN: 2455-1341 http://www.engjournal.org Page 47

After performing various methodologies described in this

projects the number of projects are decreased. Here

scalability and quality of the bugs are considered as a

criterion (fig. 4).

Fig. 5 After processing bugs is assigned to their respective categories.

In this project bugs are assigned to the respective

category (fig. 5).so that bugs are given to the

intended developer to fix the bug.

CONCLUSION

In this project we have first taken bugs from

standard products like Mozilla, Firefox etc. and

applied series of algorithms like data cleaning,

tokenization, frequency computation, Score

computation and duplicate bug detection algorithm.

The bugs are also grouped into various layers by

computing the probability, contingency and

enhanced contingency and finally applying the

classifier.

After the classification process, bugs are given to

their respective developer. Hence time and cost

factor are considered here.

ACKNOWLEDGMENT

Every project is successful due to the effort of a

number of people who have always given their

valuable advice. We sincerely appreciate their

valuable support and guidance of all those who

have been there in making this project a success.

REFERENCES

[1] J. Anvik, L. Hiew, and G. C. Murphy, “Who

should fix this bug?” in Proc. 28th Int. Conf.

Softw. Eng., May 2006, pp. 361–370.

[2] S. Breu, R. Premraj, J. Sillito, and T.

Zimmermann, “Information needs in bug

reports: Improving cooperation between

developers and users,” in Proc. ACM Conf.

Comput. Supported Cooperative Work, Feb.

2010, pp. 301–310.

[3] J. Anvik and G. C. Murphy, “Reducing the

effort of bug report triage: Recommenders for

development-oriented decisions,” ACM Trans.

Soft. Eng. Methodol., vol. 20, no. 3, Bugs 10,

Aug. 2011

